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Summary. It is demonstrated how exact transformations of full CI spaces may be 
carried out for general, non-unitary orbital transformations, and a detailed descrip- 
tion of an efficient implementation of this scheme is presented for Slater determi- 
nants. It is then shown how this technology may be employed in the optimization 
of general VB wave functions with respect to both orbital and structure coefficients. 
This may be done in a straightforward manner, incorporating first and second 
derivatives of the variational parameters. 
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1 Introduction 

The present popularity of the complete active space self-consistent field (CASSCF) 
method [1] is beyond dispute, and most standard ab ini t io packages now provide 
the facility to carry out such calculations. The CASSCF method is conceptually 
very simple, unbiased (in the sense that only the number of active orbitals, m, and 
active electrons, N, need to be specified for a given molecular system), and typically 
leads to reliable energy surfaces and molecular properties. The underlying reason 
for the p r a c t i c a l i t y  of these calculations, and hence their ubiquity, clearly lies in the 
vast theoretical and computational simplifications that are possible when the CI 
space is complete. 

The present work shows how some of these extraordinary properties of full CI 
spaces may be utilized to determine very efficiently the exact structure transforma- 
tion corresponding to a general, non-unitary orbital transformation. We can then 
use this approach to 'circumvent' the non-orthogonality problem normally asso- 
ciated with the optimization of VB wavefunctions. 

Valence bond methods have now firmly established themselves as serious 
alternatives to traditional MO methods; Exemplified by the spin-coupled valence 
bond approach [2], high quality, very compact wavefunctions may be obtained 
which have obvious advantages with respect to their interpretation, because of the 

* Current address: School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, UK 



234 T. Thorsteinsson, D. L. Cooper 

close correspondence to traditional chemical concepts of bonding. At the present 
time, however, only a small minority of quantum chemists employ VB methods on 
a regular basis, at least in part because of the limited availability of efficient general 
program packages. Indeed, developing code comparable in sophistication to the 
current MO packages would require an immense effort and so it might seem that 
there is unlikely to be any significant shift towards modern VB methods in the 
foreseeable future. 

The motivation behind this research is twofold, as follows. Firstly, the general 
availability of inexpensive procedures for generating compact VB representations 
of CASSCF wavefunctions could help bridge the existing conceptual gap between 
these two competing approaches. Secondly, the strategies described here also 
represent a very significant advance in the general development of VB methodo- 
logy. In principle, all the available technology associated with CASSCF wavefunc- 
tions now becomes available for the variational optimization of general types of VB 
wavefunction. Among the many examples one might mention are: utilization of 
point group symmetry; optimization of excited states (or a weighted average 
thereof); gradients and geometry optimization; direct approaches, with on on-the- 
fly evaluation of integrals. 

Representations of CASSCF wavefunctions based on the spin-coupled 
wavefunction have already been obtained for a range of systems 1,3, 4]. The 
CASSCF/VB overlap has always been close to unity, and the converged solutions 
are similar to the corresponding variational results. We plan to publish further 
applications of this approach in the near future. 

The structure of this paper is as follows. In Sect. 2 we develop the underlying 
theory for the transformations of full CI spaces induced by general transformations 
of the defining orbitats. Sect. 3 describes our specific implementation of this, using 
Slater determinants. In Sect. 4 we consider optimization of valence bond wavefunc- 
tions and two examples of criteria that might be defined for this purpose. Sect. 5 
describes, on the basis of these, how our general strategy may be incorporated into 
a general second-order optimization procedure. A final discussion is presented in 
Sect. 6, and a short consideration of some of the consequences of molecular point 
group symmetry is included as an appendix. 

2 Transformations of full CI spaces 

We consider in this section the effect of changing the orbital representation of a 
wavefunction of full CI type, such as a CASSCF wavefunction. Similar consider- 
ations have been presented by Malmqvist I-5], in the context of the so-called 
"CASSCF state interaction method" I-6]. The transformation of the full CI space is 
of considerable general utility and it is of potential interest to anyone considering 
the optimization of MCSCF or VB wavefunctions. 

For any general (non-unitary) linear transformation of the m active orbitals 1 

{~b') = (~b}O, (1) 

1 The wavefunction may, without loss of generality, contain a "core" part, provided that this part is 
identical in all structures. It is then necessary to consider only the orbitals with variable occupations, 
i.e., the active set. 
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there exists a corresponding transformation of the structure space 

{~'} = {q~}T(O), (2) 

in which {~} is the row-vector of the complete set of structures (configurations) 
with appropriate symmetry and spin, defined in terms of the orbitals {q~}, and {q)'} 
is the corresponding row-vector defined in terms of the {~b'}. The square matrix 
O is thus of dimension m x m and the square matrix T(O) is of dimension Ncl x Nci, 
with Nc~ being the number of functions, 4~, that define the full CI space. Equation 
(2) is a well-known property of full CI spaces, but one may find analogous identities 
for certain other types of CI space. An expansion including all configurations up to 
a given excitation level from the closed-shell reference function, for example, will 
be invariant under linear transformations of either the reference orbitals or the 
virtuals. We next take advantage of a simple property of the structure transforma- 
tions that, assuming non-singular transformations, they must form a faithful 
representation of the group of orbital transformations: 

O = O102 ¢*-T(O) = T(O1)T(O2). (3) 

A useful result deriving from this, since T(1) = 1 (where 1 and 1 are the m x m and 
No x Nc~ identity matrices, respectively), is 

T -  1(O) = T(O- 1). (4) 

Our aim is then to write the orbital transformation as a product of m x m simple 
"updates" of the form 

o,~(~):  4,~ --, ~,~ + 2q~. (5) 

for which the corresponding structure transformation will be straightforward to 
evaluate. The diagonal case, # = v, represents a scaling of q~, by 1 + 2. If the 
following identity holds for a given set of 2 parameters and ordering of updates 

0 = 011(21)012(22)013(,),B). Omm(2m2), (6) 

then the total transformation of the structure space is just the corresponding 
product of m x m simple structure transformations. These will be defined in detail 
later. Recasting Eq. (6) as 

Or~I(2m2) Ol11(21)O = 1, (7) 

and noting that O~-~1(2i) represents a "row operation" on O (adding a multiple of 
row v to row ~), we realize that a solution may be found by any of the numerous 
standard numerical methods for solving linear problems. Examples of commonly 
used procedures include Gaussian elimination with back-substitution, Jordan's 
method, and Crout's factorization algorithm (for LU decomposition) each of 
these essentially reduces a square matrix to the identity by a sequence of row 
operations [7]. The overriding consideration in our choice of algorithm is the 
numerical stability, since any inaccuracies in the factorization (6) are likely to 
accumulate when constructing the corresponding structure transformation. In 
particular, algorithms will full pivoting are to be preferred. 

We note that a 2 parameter used for the v ~ # update in Eq. (6) will in general 
be different from the corresponding element of the orbital transformation matrix, 
(O)uv, although they may coincide for certain simple transformations. This is a 
consequence of using consecutive single-orbital updates to achieve the effect of 
a simultaneous transformation of all the orbitals. 
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With the usual assumption of a "restricted" set of spin orbitals, so that 
O ~ =  O ~, the v ~/~ update of the spatial orbital (Eq. (5)) can be realized by 
identical, consecutive updates of the c~ and fi spin orbitals. The corresponding 
transformation of the structure space is thus realized by application of the operator 

(I + ^~ (8) ~Etav) (f ..~ ~fffllzv) ~-- f jr_ AE,~t~ ~-'~ (1) _j¢_ ..J] 2 ~,,(2)~izv. 

The orbitals defining the structures may in general be non-orthogonal and so the 
excitation operator (for the c~ orbital) must be defined according to 

E. ,  - u - v ,  (9) 

with a dual annihilation operator (cf. Ref. [8]). This is necessary to preserve the 
usual anticommutation relation between creation andannihilation+ operators, such 
that the action of ^" E , ,  is a simple replacement of ~b~ by ~b,. We must remark, 
however, that the role of the dual set in this context should be viewed merely as one 
of notational convenience. ~(1) in Eq. (8) describes single excitations v ~/1  and ~/ tV 
~(a) describes double excitations. Similarly, ~(*) i~ the usual "number operator" for 
orbital #, and ~-(2) has eigenvalues 1 or 0 according to whether orbital/~ is doubly a-, N0, 
occupied or not. 

Clearly, the matrix representations of the excitation operators inherent in 
Eq. (2) are independent of orbital overlap. This is most readily seen by inserting a 
resolution of the identity, ~K[ ~bK > <~r[, into the definition of, say E(,1): 

E(,)~ "~(*h,,~s, (i0) #v "/1 : E ~Ji~#v . .  
Y 

so as to obtain 

(v(*)~ /~(i) ~ \ (11) 

The elements of this matrix coincide with the standard one-particle coupling 
coefficients. 

It should be stressed that the formulae given above do not involve any 
approximations whatsoever. The exact transformation of the structure space is 
thus determined simply by m x m consecutive applications of Eq. (8), using the 
ordering of updates and 2 parameters found from Eq. (6). 

3 Expansion in Slater determinants 

In view of our earlier remarks, a full CI transformation is likely to be of greatest 
utility in the context of one of the existing CASSCF modules. This heavily 
influences the choice of expansion functions. One of our aims was to write standard 
code which could easily be incorporated into standard molecular packages such as 
MOLPRO [9], and it was therefore natural to consider Slater determinants as the 
functions spanning the CASSCF space. Another consideration is that an integral- 
driven (or "direct") CI code might be available, in which case the structure 
transformation can be implemented fairly straightforwardly from the code deter- 
mining the one-electron contribution to the CI vector. The direct CI scheme 
originally due to Siegbahn [10] has been adapted to full CI Slater determinant 
spaces by Knowles and Handy [11]. 

A significant computational convenience associated with using Slater deter- 
minants to span the full CI space is that the c~ and fl parts may be considered 
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separately, i.e., ~b = ~,~tJ (see also Ref. [11]). If the e orbitals occur first in all 
determinants, for example, any phase factor relating to the excitation of an c~ orbital 
will be independent of the nature of the fl string (and vice versa). For the same 
reason, it is natural to store the CI vector as e(H, I p) (essentially a rectangular 
matrix), where I" is the index of the ~ string only, and I t~ is the index of the fl string. 
For  the special case S = 0, the matrix e is square symmetric, and only its triangular 
part has to be stored. One must also mention the most serious disadvantage of this 
approach, which is the larger number of determinants required, relative to the 
number of configuration state functions (CSFs). 

The basic strategy that we use for the update of an ~ orbital involves creating an 
intermediate string of N~ - 1 c~ orbitals, so as to minimize the need for large 
indexing arrays. The scheme may be summarized as follows: 

1. Loop over all c~ strings containing the orbital q~v. 
2. For  each c~ string rearrange so as to get ~bv first - the associated phase factor 
is P1. 
3. "Annihilate" Cv. This will give an intermediate N~ - 1 string. 
4. "Create" ¢~. Obtain the index for the final e string. 
5. Rearrange the ~ string so as to get ascending orbitals - the associated phase 
factor is Pz. 
6. Loop over all fl strings. Update according to e(It~o, I ~) := c(Ho, I ~) + 
2P1P2 x c(I~ . . . .  I/~). 

Note that in-place updating of the CI vector is possible because no recurrence ever 
occurs in the loop - the I~rom and I{~o indices form disjoint sets. Steps 2 to 5 may be 
omitted for the case # = v. The indexing and phase information may be conve- 
niently kept in precalculated arrays because of the modest associated storage 
requirement. 

The loop structure must be modified slightly for the special case S = 0, since 
only the upper triangle of e will be updated. The most important consideration is 
how to retain the in-place updating of the CI vector while still avoiding the 
problem of recurrence. If # = v, this is simply achieved by restricting the length of 
the inner loop. Otherwise, it is important  that the e and fl updates are done in pairs, 
in order, as far as is possible, to retain the c~*-+fl symmetry. One possible scheme is 
shown in Fig. 1, in which the inner loop structure replaces item 6 above. 

The algorithm we have just outlined has an extremely simple loop structure 
which should enable efficient implementation on modern computer architectures. 
The length of the inner loop will be 102-103 for typical systems, each iteration 
consisting of a simple multiply-add or, for the case, # = v a simple multiply. The 
effort associated with a complete transformation of a CI vector, as defined by the 
total number of inner loop iterations NL, is given in Table 1 for a range of 
representative combinations of N, m and S. It has been assumed here that all 
the 2 parameters occurring in Eq. (6) are non-zero. This would not be the case if, 
for example, some of the orbitals were orthogonal, perhaps because of symmetry 
considerations. 

We have also shown in Table 1 the corresponding numbers for bonded struc- 
tures, based on Rumer functions, although in this case each iteration is slightly 
more involved than for determinants. The number of determinants is simply the 
product  of the number of ~ and fl strings: 

Naet(g, m, S) = N= x , (12) 
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Alpha update 

If (I,~o > I~rom) then 
Do I ~ = I~o, N~.t 

c(l~o, I a) := c(Ho, I ~) + 2P1Pz x c(I~o~, I p) 
End Do (1 p) 

Else 
Do I p - ~ " --  / to ,  /from 

c(I~o, I ~) := c(l~o, I t~) + 2PIP2 x e(I p, /~rom) 
End Do (I ~) 
Do I ~ - ~ 1, N~ot --  /from + 

c(I~o, I o) := c(I~o, I t~) + 2P1Pz x C(I~rom, I p) 
End Do (I p) 

End If 

Beta update 

If (I,Po > IfProm) then 
Do U = 1, I~rom - -  1 

c(U, It~o):= c(P, ItPo) + 2P1P2 × c(U, I~rom) 
End Do (P) 
Do U = /f~rom, /~o 

c(P, I~o):= c(P, leo) + ).P1P2 X C(/r~rom, U) 
End Do (P) 

Else 
Do U = 1, lt~o 

c(U, ltPo):= c(U, I~o) + 2P1P2 x e(U, IfProm) 
End Do (U) 

End If 

Fig. 1. Schematic inner loop structure for the ¢,  ~ ¢~ update in the ease of S = 0 

wi th  N~ = ½N + S a n d  Na = ½N - S, wh e re a s  the  d i m e n s i o n  of  the  space  f o r m e d  
f rom b o n d e d  s t ruc tu res ,  NcAs, can  be  s h o w n  to  be  [12]  

UcAs(N,m,S)=2S+I{ +I)( m+l ) (13) 
m + l  \½N-SJ\½N+S+I " 

I t  is n o t i c e a b l e  (see T a b l e  1) t h a t  the  effort  a s s o c i a t e d  wi th  e v a l u a t i n g  T (O)  is n o t  
ve ry  l a rge  re la t ive ,  say,  to  t h a t  i n v o l v e d  in a s imp le  sca la r  p r o d u c t  b e t w e e n  two  C I  
vec to r s  - for  the  largest  sys t ems  g iven  here,  the  va lue  of NL for  a c o m p l e t e  s t r uc tu r e  
t r a n s f o r m a t i o n  is a p p r o x i m a t e l y  110 t imes  the  n u m b e r  of l o o p  i t e r a t i o n s  n e e d e d  
for  a s ca l a r  p r o d u c t .  

4 Optimizing VB wavefunctions 

In  this  a n d  the  nex t  sec t ion  we c o n s i d e r  one  p a r t i c u l a r  a p p l i c a t i o n  of  the  t e c h n o -  
logy  of  s t r u c t u r e  t r a n s f o r m a t i o n s ,  n a m e l y  the  o p t i m i z a t i o n  of  va lence  b o n d  func-  
t ions  e i the r  i n d e p e n d e n t l y  or  as a m e a n s  of  p r o v i d i n g  VB r e p r e s e n t a t i o n s  of  full 
CI  wave func t ions .  T h e  gene ra l  i dea  is s i m p l y  t h a t  the  n o n - o r t h o g o n a l i t y  p r o b l e m  
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Table 1. Number  of loop iterations (NL) associated with one structure transformation of a single 'N in 
N' CI vector. Nao, is the total number of determinants and Nchs is the numbers of CSFs in the CI space: 

these values could be reduced by making use of any molecular point group symmetry 

N S NcA s Ndet NL (determinants) NL 
(Rumer functions) 

2 0 3 4 8 10 
2 1 1 1 2 2 
3 1/2 8 9 63 56 

4 0 20 36 216 228 
4 1 15 16 160 162 
5 1/2 75 100 1.70 x 103 1.44 x 103 
6 0 175 400 4.80 x 103 4.50 × 103 
6 1 189 225 4.95 x 103 5.00 x 103 
7 1/2 784 1225 3.80 x 104 3.07 x 104 
8 0 1764 4900 9.80 x 104 8.48 x 104 
8 1 2352 3136 1.19 x i0 s 1.21 x 105 
9 1/2 8820 15876 7.78 x 105 6.08 x 105 

10 0 19404 63504 1.91 x 106 1.56 x 106 
10 1 29700 44100 2.56 x 106 2.61 x 106 
11 1/2 104544 213444 1.52 x 107 1.16 x 107 

12 0 226512 853776 3.59 x 107 2.83 x 107 
12 1 382239 627264 5.14 x 107 5.28 x 107 
13 1/2 1288287 2944656 2.86 x l0 s 2.15 x 108 

14 0 2760615 11778624 6.60 x 108 5.07 x 108 
14 1 5010005 9018009 9.92 x 10 a 1.03 x 109 

may be circumvented once the structure transformation T(O) is known. We have, 
for example, 

H' -- Tt(O)HT(O), (14) 

S ' =  Tt(O)ST(O), (15) 

and 

C ! CAS = T -  1 (O)CcAs. (16) 

So, if H, S and eChS are first evaluated using orthogonal orbitals they may then 
subsequently be transformed straightforwardly to the corresponding quantities in 
terms of non-orthogonal orbitals. 

We shall assume that the valence bond function can be expressed in terms of 
structures: 

Nw 

~gvR = ~ b~ ~gvB, (17) 
I 

in which the ~vVB are formed from a set of m linearly independent, in general 
non-orthogonal, (active) orbitals {~vB}. Clearly, the valence bond wavefunction 
will always lie in the "N in m" full CI space formed from any set of orbitals spanning 
the same space as the {~bvB}. The valence bond structures will in general be related 
by a linear transformation to a subset (often quite small) of transformed structures 

= ( 1 8 )  
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where D is a rectangular matrix of dimension Ncm by NvB or Na~t by NVB, 
depending on the type of structures used. In the case of the spin-coupled wavefunc- 
tion, for example, D would consist of the transformation coefficients from covalent 
determinants to spin eigenfunctions. 

We have previously considered two main types of wavefunction optimization 
[3, 4]: straightforward minimization of the energy expression 

< ~vBI/t}~vB > b*DtT*(O)HT(O)Db 
EvB = <~vBI ~vB> = b*D*T*(O)ST(O)Db' (19) 

or, alternatively, maximization of the overlap with a previously optimized 
CASSCF wavefunction 

< ~CASl ~VB > C*CAS ST(O)Db 
SvB = < 7tvB I tPvB) 1/2 = (b* D~T * (O)ST(O)Db) 1/2' 

(20) 

Many other criteria might be envisaged, but the two given here are sufficient to 
illustrate the underlying ideas. Neither H nor S will in general be stored explicitly, 
the crucial point being that, as they are formed from orthogonal orbitals, they may 
be constructed very efficiently. 

Both criteria given above can be used to obtain very compact approximations 
to CASSCF wavefunctions, in that if either quantity is optimized with respect to 
the orbital transformation matrix O and the vector b in Eq. (17) (giving m x (m - 1) 
and N v a -  1 free parameters respectively), then we have Db ~ T(O-1)CcA S (cf. 
Eq. (16)) at convergence [3, 4]. With this in mind, it is natural to introduce the 
projection operator PvB (with matrix representation PvB), defined so that 
PvBT(O- 1)eCAS is a valid valence bond wavefunction. This may then be substituted 
for Db in Eqs. (19) and (20), so that the complexity of the optimization problem 
is somewhat reduced (by the number of linear variational parameters, Nw - 1) 
[3, 4]. 

If a representation of a CASSCF wavefunction is sought, then the orbital set in 
Eq. (1) will be identical to the optimized active CASSCF orbital set. However, 
independent optimization of the valence bond wavefunction is also possible. Of 
course, the active-virtual orbital rotations must be included in the optimization 
procedure, and, if the wavefunction contains also a core part, the rotations 
involving the core orbitals. This is most simply achieved by a two-step procedure 
with alternating updates of the "internal" variational parameters defining O and b, 
and the "external" orbital rotation parameters, as has previously been done in 
Ref. [13]. A more efficient procedure will entail incorporating also the coupling 
between these two parameter sets, and we consider this briefly in Sect. 5. 

The quantities EvB and SvB are most efficiently evaluated by constructing each 
term sequentially left-to-right (or right-to-left), so that at most two vectors need be 
stored in memory at any particular time. A simplification is possible when S is 
the identity (for determinants or structures based on Kotani functions) in that 
Tt(O)T(O) = T(O*O) = T(s), s being the orbital overlap matrix. Assuming ortho- 
gonal structures, evaluating SVB in Eq. (19) can then clearly be achieved with two 
transformations of the structure space. Similar EVB in Eq. (20) may be evaluated 
using just two structure transformations, but the evaluation will normally be 
dominated by the effort involved in multiplying the Hamiltonian, H, on the vector 
T(O)Db. To our knowledge, the most efficient approach for achieving this is 
represented by further developments of Siegbahn's algorithm [10], as may be found 
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in Refs. [14-16]. The operation count is approximately 

N8 1 2 1 2 : U d e  t X (gNa (m - -  N~) 2 + - g N p ( m  - Np) 2 + N , N ~ ( m  - N . )  (m - N¢))  (21) 

multiply-adds, assuming that all of the two-electron integrals are non-negligible. 
The three terms in Eq. (21) are associated with the ~e, tiff and c~fl parts of the 
two-electron integrals, respectively. Thus, for the larger systems considered in 
Table 1, the effort associated with applying the Hamiltonian is roughly thirty times 
greater than that involved in applying T(s). 

5 Derivative expressions 

Orbital optimization in both MCSCF and VB is generally sufficiently complex to 
warrant the use of full second-order methods, and thus evaluation of first and 
second derivatives. This may be done straightforwardly in the present scheme by 
considering the effect of variations in O or b on the quantities being optimized 
(Eq. (19) or (20)). For the linear coefficients, this is entirely trivial, in that we have 

~b 
- -  = 6 m A  (22) 
Ob~ 

in which 6 m is unity at position I, and is otherwise zero. From this it is then 
straightforward to find the corresponding component of the gradient for EvR 
or SvB. 

The first-order transformation matrix corresponding to O,~ can be determined 
easily from Eq. (8) as 

[ aT(O.v(2)lq = l~,(') (23) 

i.e., simply the one-particle coupling coefficients. For the purpose of evaluating the 
associated gradient we write the total orbital transformation as OO,~(2), giving 
a corresponding first-order structure transformation as T(O)E(,~. 

Similarly, it is straightforward to show that the second-order change corres- 
ponding to the simultaneous updates 

&): + x , ¢ . / x  - .  + (24) 

reduces to the two-particle coupling coefficients (cf. Ref. [17]) 

I c32T(O"w~(';[l' ']'2)) 1 = Iq',O) F(1) _ ,~ ~(1) 
(25) 

This may be shown trivially by writing O~ .... as a product of single-orbital updates 
of the form in Eq. (5). It is not in fact necessary to evaluate the last term in Eq. (25) 
provided that the correct ordering of single-excitation matrices is ensured in the 
product; for the case ~(1)¢o) _ 1~(1) the last term will give an o v e r a l l  contribution ~ v  ~v~z ~ / z ~ ,  
of zero, since the optimization expression will normally be independent of orbital 
normalization. An expression for the total Hessian may then be constructed by 
considering second-order changes arising from simultaneous updates (Eq. (24)), as 
well as from combinations of single orbital updates (Eq. (5)) and linear variations 
(Eq. (22)). 
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We now consider the computational effort associated with the evaluation of 
first and second derivatives. For both min(EvB) and max(SvB), most of the required 
computational effort will arise from the combinations of first-order updates contri- 
buting to the total Hessian matrix. For the numerator defining EVB, for example, 
these will be of the form 

b+D+E~+ ~I)T* (O) HT(O)E~I~)Db, (26) 

btDtE +u~')Tt (O)HT(O)D6 (~> , (27) 

and 

6(m D+T + (O)HT(O)D6(J), (28) 

and so a total of m x (m - 1) + NvB -- 1 multiplications by H will be required 
(variations associated with normalization conditions may be omitted). The same 
number of structure transformations, T(s), will be required for variations of the 
denominator (as well as for variations of SvR). In general, Nva r multiplications by 
H and/or structure transformations will be required for the evaluation of this part 
of the Hessian, where Nvar is the number of free, non-redundant variables. 

It is clear that only a small part of the Hessian evaluation is responsible for the 
vast majority of the computational effort, and it is appropriate to take this into 
account in the optimization procedure. This could, for example, be achieved by 
updating this part of the Hessian only every so many iterations, or testing more 
than one update at a time based on the exact Hessian matrix. 

In the course of a standard CASSCF calculation, an important step is con- 
structing and solving the full-CI secular problem in order to determine the optimal 
CI coefficients. This is then followed by the optimization of the external orbital 
rotations. This second phase may or may not incorporate relaxation of the CI 
vector, i.e., coupling between the CI coefficients and orbital rotations. For further 
details we refer the reader to the literature, e.g., Ref. [18]. In our case, the CI 
optimization step will clearly be replaced by the optimization of internal VB 
variables as described above. For the coupling between internal and external 
parameters, the first-order change in the CI vector corresponding to changes in the 
internal parameters must be gauged. The first-order change of the CI vector will be 
of the form 

T(O)E~I)Db (29) 

for an orbital update, or 

T(O)D6 m (30) 

for the first-order change of the linear coefficient, b~. Thus, if the coupling between 
CI coefficients and external parameters is known, it is also straightforward to 
obtain the coupling between the internal VB parameters and the external orbital 
rotations. A compromise strategy would be to vary the CI coefficients freely in 
response to external orbital rotations, then eliminate variations not of the form 
T(O)E~I)Db or T(O)D6 tI), before reoptimizing the external orbital parameters 
using the CI coefficients thus obtained. 

6 Discussion 

The simple idea, outlined in Sect. 2 and Refs. [3, 5], of arranging sequential updates 
so as to obtain the effect of simultaneous ones, may be a useful alternative to the 
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approaches generally adopted in MCSCF theory, most of which do not go beyond 
the (admittedly very useful) 'exponential-i-lambda' method [19, 20-] of describing 
the structure transformation. For a full CI space, the most efficient treatment of the 
structure transformation is achieved by using Slater determinants. In our specific 
implementation, the following characteristics are particularly worthy of mention: 

1. The total effort scales approximately linearly with the size of the CI space 
(cf. Table 1). 
2. In-place updating of the CI vector. 
3. Proper treatment of the case S = 0 in order to minimize memory and CPU 
requirements. 
4. Intermediate N ~ - 1 and N ¢ -- 1 strings to avoid large indexing arrays. 

The second point is particularly important in order to avoid superfluous copying or 
zeroing of the CI vector. If CSFs are used instead of determinants, in-place updating 
can similarly be achieved provided that care is taken to eliminate the possibility of 
recurrence. In most cases where an integral-driven, direct CI algorithm exists, imple- 
mentation of the structure transformation scheme should be very straightforward. 

The strategy of structure transformations is very well suited to the optimization 
of valence bond wavefunctions, provided that the numbers of active electrons and 
orbitals are of comparable magnitudes to what may be treated by CASSCF. The 
formalism presented here is very flexible, both regarding variations of the type of 
VB wavefunction that may be optimized, as well as the optimization criteria that 
can be used. Independent optimization of the wavefunction is possible, or the 
strategy may be employed for obtaining a compact representation of a previously 
optimized CASSCF wavefunction. The computational effort associated with an 
iteration, employing a complete second-order optimization scheme, will then be 
approximately 

Nvar × NH (31) 

for optimizing quantities containing the term (TVB]/~L TvB) (see Eq. (21)), and 

Nvar x Xc (32) 

for quantities containing only (~vB] ~vB), Nv,r being the number of free varia- 
tional parameters defining the wavefunction. 

Overall, the strategy we have presented here has proved to be very competitive 
compared with the standard codes for non-orthogonal orbital optimization (as 
described, for example, in Ref. [21]), and for systems with molecular symmetry it 
should be clearly superior. The effects of point group symmetry will be a reduction 
in the effort associated with multiplication by H, a reduction in Nv,r ( and hence in 
the total effort), and possibly a reduction in the effort associated with applying 
T(O), depending on the structure of O. 

The previously reported applications of this method [-3, 4-] have been concerned 
only with VB representations of CASSCF wavefunctions, but should amply dem- 
onstrate the viability of the scheme we have described here. We except to publish 
further applications in the very near future. 

Appendix: consequences of point group symmetry 

Provided that the full CI vector is symmetry-pure, it may be assumed that the 
orthogonal active orbitals belong to irreducible representations of the molecular 
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point group. Particularly if the symmetry group is Abelian, it is then a trivial matter 
to determine the symmetry property of each individual structure, and thus to 
restrict the CI space according to the required overall symmetry. Since each 
irreducible representation is one-dimensional for an Abelian group, the irreducible 
representation of the total structure (or determinant) may be identified trivially 
from the simple product of characters of each MO. If a graphical indexing scheme 
is employed [22-1, it is particularly straightforward to ensure that only structures of 
correct symmetry are included. 

The case is far more complicated for VB wavefunctions, as it is usually not 
possible (in advance of seeing the results) to place any restrictions on the individual 
orbitals. A very thorough analysis of the conditions on the single-configuration 
spin-coupled wavefunction has been carried out by Gerratt for the case where the 
total wavefunction belongs to a non-degenerate irreducible representation [23]. 
The corresponding case of a degenerate irreducible representation has been con- 
sidered in Ref. [24]. It would be straightforward to extend these considerations 
to a wavefunction consisting of more than one configuration. Summarizing the 
results, we note that, with the exception of special cases, the point group operations 
must induce simple permutations of the orbital set. This leads to a corresponding 
permutational symmetry of the spin function, so that the symmetry condition may 
be used to restrict the number of spin functions used. Short of explicitly creating 
symmety-adapted structures, there is however no straightforward way of reducing 
the total CI space. 

For the purpose of optimizing CASSCF wavefunctions, it is very convenient to 
assume a particular distribution of the active MOs among the irreducible repres- 
entations. This is equally convenient for the optimization of VB wavefunctions, 
and we have therefore adopted this approach. This will be particularly important 
for the optimization of the external variables, but it has the added advantage that it 
is very simple to ensure the correct symmetry of the total VB wavefunction. 
A symmetry operation will induce a change of phase in certain orbital coefficients, 
as determined by the linear characters, and it is then trivial to establish if this 
corresponds to an orbital permutation. 

Inherently, symmetry will not in general reduce the effort associated with 
applying T(O). This statement is analogous to the observation that intermediate 
states of all symmetries are required in the scheme of Siegbahn [10]. However, 
symmetry considerations may affect the computational effort indirectly. This 
would be the case, if, for example, O possessed partial orthogonality such that a 
subset of 2 parameters in Eq. (6) became zero. 
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